Preserving Patient Privacy in Dynamic Treatment Regimes

Dylan Spicker Erica E.M. Moodie Susan M. Shortreed

Department of Epidemiology, Biostatistics and Occupational Health McGill University

Tuesday May 30, 2023

Treat the patient, not the disease.

We want to estimate a decision function,

$$d\colon \mathcal{H} \longrightarrow \mathcal{A} = \{0, 1\},\$$

where $H \in \mathcal{H}$ is the patient history and $A \in \mathcal{A}$ is the treatment decision.

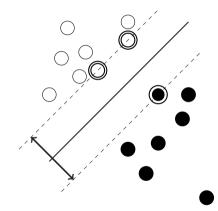
We call this function a individualized treatment rule (ITR).

An ITR, d, has value

$$V(d) = E\{E[R|A = d(H)]\}.$$

Optimal ITRs maximize the value.

An ITR, d, has value


$$V(d) = E\{E[R|A = d(H)]\}.$$

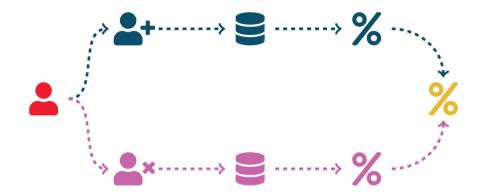
Optimal ITRs maximize the value. Optimal ITRs minimize

$$E[R|A = 1] + E[R|A = -1] - V(d) = E\left[\frac{R}{P(A|H)}I(A \neq d(H))\right].$$

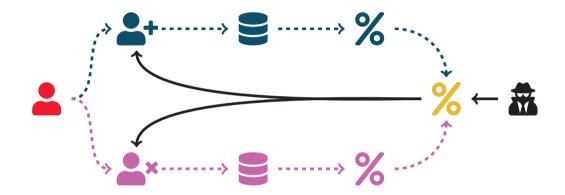
Outcome-Weighted Learning (OWL) estimates optimal ITRs by minimizing a regularized, empirical version of this error.

Support Vector Machines (SVM)

SVMs use hyperplanes to solve classification problems.


The resulting classifier exists as

$$f(H) = \sum_{i \in SV} \alpha_i A_i K(H_i, H).$$


Generally, the resulting decision function requires the **direct release** of the support vectors.

$$f(H) = \sum_{i \in SV} \alpha_i A_i \exp\left(-\sigma^2 \|H_i - H\|\right)$$

Differential Privacy

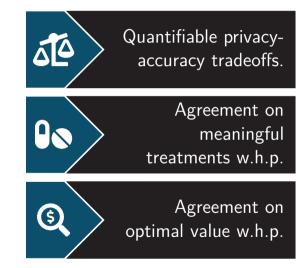
Differential Privacy

We say that an estimator, \mathcal{M} , is ϵ -differentially private if for **all** neighbouring datasets, \mathbb{X} and \mathbb{X}^{\dagger} , we have:

$$\frac{P(\mathcal{M}(\mathbb{X}) \in \mathcal{Y})}{P(\mathcal{M}(\mathbb{X}^{\dagger}) \in \mathcal{Y})} \leq e^{\epsilon}.$$

We propose a differentially private implementation of OWL, called PrOWL.

1. Approximate the kernel in finite dimensions.


We propose a differentially private implementation of OWL, called PrOWL.

- 1. Approximate the kernel in finite dimensions.
- 2. Compute the standard OWL estimator.

We propose a differentially private implementation of OWL, called PrOWL.

- 1. Approximate the kernel in finite dimensions.
- 2. Compute the standard OWL estimator.
- 3. Perturb the vector with Laplace distributed errors.

PrOWL Guarantees

Privacy should be a major concern within precision medicine and beyond.

Differential privacy provides one framework for addressing these concerns, with promising results thus far.

Thank You!

www.dylanspicker.com | dylan.spicker@mcgill.ca